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I. INTRODUCTION 

The detection by the COBE DMR instrument of fluctuations in the temperature 
distribution of the Cosmic Microwave Background Radiation (CMBR) on large an- 
gular scales [l] is certainly one of the most significant cosmological results since the 
detection of the CMBR itself. These fluctuations provide valuable information about 
the nature of primordial perturbations believed responsible for the origin of structure 
in the Universe. The horizon radius at the epoch of last scattering of the CMBR 
corresponds to angular scales of about 2” on the sky, which implies that fluctuations 
on scales probed by COBE were not predominantly affected by causal processes or 
the nature of the matter constituents of the Universe at the time of last scattering 
of the CMBR. Indeed, them large-scale (greater than 2”) fluctuations arise from the 
Sachs-Wolfe effect when photons are either red or blue shifted as they climb out of, 
or fall into, gravitational potential wells [2]. It is most likely that the fluctuations 
in the CMBR are the result of processes that occurred very early in the history of 
the Universe, so they yield vital information concerning the physics that led to the 
primordial perturbations. 

There are currently two very attractive scenarios for the origin of the primordial 
fluctuations: quantum effects during inflation, and gravitational effects of defects 
resulting from cosmological phase transitions. Both scenarios involve physics beyond 
the stand_ard model of particle physics, involving energies in the range 10”GeV 5 
E 5 10’gGeV, an energy scale we will refer to loosely as the Grand Unified Theory 
(GUT) scale. A major difference in the predictions of the two scenarios concern the 
Gaussian nature of the fluctuation pattern, and we should be able to use this to 
differentiate between the two possibilities in the near future. In this paper we will 
assume that the fluctuations are the result of inflation, and we discuss what might be 
learned about particle physics at very high energies from astronomical observations 
from which we can infer the primordial fluctuation spectrum. 

All models of inflation involve a period of rapid growth of the size of the Universe. 
This is most easily illustrated by considering a homogeneous, isotropic Universe with 
a flat Friedmann-Robertson-Walker (FRW) metric described in term of a scale factor 
a(t). Here, “rapid growth” means a positive value of ii/a = -(4xGN/3)(p+3p) where 
p is the energy density and p the pressure. In all successful models of inflation, the 
Universe is dominated by some sort of scalar “potemial” energy density V > 0 that 
is positive, resulting in an effective equation of state p 2 -p 1: V, and hence ii > 0. 
If one identifies the potential energy as arising from the potential of some scalar field 
@, then I$ is known as the injlaton field. 

Even within this traditional view of inflation, there are two major ways to imple- 
ment the scenario. One way involves a first-order phase transition. In this method, 
either in the original proposal of Guth [3] ‘ or the latest version called extended in- 
flation [4]; the inflaton is trapped in a meta-stable, or false-vacuum. state while the 
Universe inflates. Inflation is ended when the Universe undergoes a first-order phase 
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transition in which the inflaton field tunnels to its true-vacuum state. In the second 
method, inflation occurs because for some reason the inflaton field is displaced from 
its minimum and its potential energy density dominates the Universe; inflation occurs 
while the inflaton field is slowly evolving, or rolling, to its minimum [5, 61. It is this 
second class of %low-roll(l models we will consider in this paper.’ 

.i\lthough the early slow-roll models had potentials that were reasonably simple 
(Coleman-Weinberg, X44, etc.), or- at least polynomials in some scalar field, many 
attractive models have been developed where the scalar potential driving inflation 
is quite complicated. Perhaps the study of the density perturbations produced by 
inflation can shed some light on the nature of the potential. 

Broadly speaking, inflation predicts a very nearly Gaussian spectrum of density 
perturbations that is scale dependent, i.e.,~the amplitude of the perturbation depends 
upon the length scale. Such a dependence~typically arises because the Hubble ex- 
pansion rate during the inflationary epoch in fact changes, albeit slowly, as the field 
driving the expansion rolls towards the minimum of the scalar potential. This implies 
that the amplitude of the fluctuations as they cross the Hubble radius will be weakly 
time-dependent. 

Within the context of slow-roll inflation, Hodges and Blumenthal [7] have shown 
that any scale dependence for density perturbations is possible if one considers an 
arbitrary functional form for the inflaton potential, V(4). In this’sense, inflation 
makes no unique prediction concerning the form of the spectrum and one is lefty with 
two options. Either one can aim to find a deeper physical principle that uniquely 
determines the potential, or observations that depend on V(b) cari be employed to 
limit the number of possibilities. 

Improved observations of large-scale structure, of which COBE provides the most 
dramatic example at present, are important because they allow us, in principle, to 
determine the spectrum of primordial density perturbations. This may very well 
provide a direct experimental window on the physics of the Grand Unified era cor- 
responding to energy scales of the order 10 r6 GeV. The purpose of the present work 
is to investigate to what extent information from the CMBR and large-scale galactic 
structure will allow us to reconstruct GUT physics. 

In the following section we will review the salient aspects of slow-roll inflation. 
In Section III we discuss the reconstruction of the inflaton potential from knowledge 
of scalar or tensor perturbations. Section IV illustrates the formalism by several 
examples in which the functional form of the potential is found from knowledge of 
the tensor and scalar perturbation spectra. Section V illustrates what can be learned 
about the potential from observations of the properties of the tensor and scalar spectra 
at a particular length scale. InSection VI the reader may find a discussion of how one 
determines the primordial density spectrum. Finally, Section VII offers an assessment 
of the prospectus for reconstruction of the inflaton potential. 

‘In reality, often the distikction between the two methods is not so clean, and it is possible to 
consider some types of first-order inflat’& models as variants of slow-roil models. See Ref. [4]. 
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11; REVIEW OF SLOW-ROLL INFLATION 

For the benefit of those not familiar with the generation of scalar and tensor 
perturbations in slow-roll inflation, we review the salient features in this section. 
Those comfortable with the basic results may wish to skip this section, and refer 
back to it as needed to understand notation and conventions. We set c = h = 1. and 
define tc2 = 8nGv = 8*/m+,. 

Slow-roll inflation requires a scalar field 4 to be displaced from the minimum of its 
potential at some time early in the evolution of the Universe. If during the evolution 
of the field to its minimum a region of the Universe is dominated by the potential 
energy of the field, then the volume of that region will undergo rapid expansion, 
inflate, and grow to encompass a volume large enough to contain all of the presently 
observed Universe. Eventually the potential energy ceases to dominate when the field 
evolves through a steep region of the potential and the field evolves so rapidly that 
the kinetic energy of the field comes to dominate. This is the end of inflation, and is 
followed by the scalar field oscillating about the minimum of its potential, with the 
inflaton field decaying and ‘re-heating’ the Universe by conversion of vacuum energy 
to radiation. 

We are interested in the perturbations resulting from inflation. The “density” 
perturbations are usually described in term of fluctuations in the local value of the 
mass density. In a Universe with density field p(x) and mean mass density po, the 
density contrast is defined as 

qx) = 6po = PW - PO 
PO PO 

(2.1) 

It is convenient to express this contrast in terms of a Fourier expansion: 

6(x) = A / 61, exp( -ik . x)d3k, (2.2)~ 

where A is simply ~some overall normalization constant, interesting only for those 
who enjoy keeping track of factors of 2r. What is usually meant by the density 
perturbation on a scale A, (6p/p) A, is related to the square of the Fourier coefficients 
6k: 

(2.3) 

where again we have included an overall normalization constant ii’. The perturbations 
are normally-taken ~to be (statistically) isotropic, in the sense that the expectation 
of [&I2 averaged over a large number of independent regions can depend only on 
Ic = lkl. The dependence of 6p/p as a function of X is the spectrum of the density 
perturbations. Of crucial importance is the relative size of scale X to the scale of the 
Hubble radius. The physical length between two points of coordinate separation d is 
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X(t) = a(t)d. A length scale comoving with the expansion will grow proportional to 
a(t). If ii(t) < 0, as in the standard non-inflationary phase, then a(t) will grow slower 
than t. If 6(t) > 0, as in the inflationary phase, then a(t) will grow faster than t. 

For a spatially flat isotropic Universe the Hubble expansion rate, H(t) = o/a, is 
given by 3H*(t) = n*p(t). The inverse of the Hubble expansion rate, the Hubble 
radius An(t) E H-‘(t), is the scale beyond which causal processes no longer operate. 
In the non-inflationary phase XH increases linearly with time. Since in the non- 
inflationary phase XH IX t, while ,4(t) increases more slowly than t, the Hubble radius 
increases faster than X(t), and a length scale x(t) will start larger than the Hubble 
radius (X > X,), cross the Hubble radius (X = X,), and then will remain inside the 
Hubble radius (X < X,). 

The story is different if we imagine that the Universe was once in an inflationary 
phase. In inflation H is roughly constant, so the Hubble length is roughly time inde- 
pendent. Thus, a given scale can start sub-Hubble radius, X < XH. then pass outside 
the Hubble radius during inflation, and then re-enter the Hubble radius after inflation. 
Thus, perturbations can be imparted on a given length scale in the inflationary era 
as that scale leaves the Hubble radius, and will be present as that scale re-enters the 
Hubble radius after inflation in the radiation-dominated or matter-dominated eras. 

Microphysics cannot affect the perturbation while it is outside the Hubble ra- 
dius, and the evolution of its amplitude is kinematical, unaffected by dissipation, the 
equation of state, instabiljties, and the like. However, for super-Hubble radius sized 
perturbations one must take into account the freedom in the choice of the background 
reference space-time, i.e., the gauge ambiguities. As usual when confronted with such 
a problem, it is convenient to calculate a gauge-invariant quantity. For inflation it 
is convenient to study a quantity conventionally denoted C [8]. In the uniform Hub 
ble constant gauge, at Hubble radius crossing C is particularly simple, related to the 
background energy density and pressure po and po, and the perturbed energy density 
PI: 

C = ~P/(PO + PO), (2.4) 

where 6p = p, - po is the density perturbation. 
In the standard matter-dominated (MD) or radiation-dominated (RD) phase, C 

at Hubble radius crossing (up to a factor of order unity) is equal to &p/p. Thus, the 
amplitude of a density perturbation when it crosses back inside the Hubble radius 
after inflation, (6p/p)~o~,* is given by ( at the time the fluctuation crossed outside 
the Hubble radius during inflation. 

As inferred from the adoption of C, the convenient specification of the amplitude of 
density perturbations on a particular scale is when that particular scalejust enters the 
Hubble radius, denoted&s (6p/p)~o~. Specifying the amplitude of the perturbation 
at Hubble radius crossing~evades the subtleties associated with the gauge freedom, 

*The notation “HOR” ~follows because ‘often in the literature the Hubble radius is referred to 
(incorrectly) as the horim& 
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and has the simple Newtonian interpretation as the amplitude of the perturbation in 
the gravitational potential. Of course, when one specifies the fluctuation spectrum at 
Hubble radius crossing, the amplitudes for different lengths are specified at dinerent 
times. 

Now let us turn to the scalar field dynamics during inflation. Consider a minimally 
coupled, spatially homogeneous scalar field 4, with Lagrangian density 

L = @&&b/2 - V(@) = $12 - V(b). (2.5) 

W’ith the assumption that ‘4 is spatially homogeneous, the stress-energy tensor takes 
the form of a perfect fluid, with energy density and pressure given 
and pQ = $/2 - V(b). The classical equation of motion for 4 is 

by pm = $/2+V(+), 

$J + 3H4 + V’(4) = 0, (‘W 

with the expansion rate in a flat FRW spacetime given by 

H2 = $ (;” + v(4)) (2.7) 

Here dot and prime denote differentiation with respect to cosmic time and 4 respec- 
tively. We assume that inflation has already provided us with a flat universe by the 
time the largest observable scahes cross the Hubble radius. 

By differentiating Eq. (2.7) with respect to t and substituting in Eq. (2.6), we 
arrive at the “momentum” equation 

21j = -&j2. (2.8) 

All minimal slow-roll models are examples of sub-inflationary behavior, which is de- 
fined by the condition fi < 0. Super-inflation, where I? > 0, cannot occur here, 
though it is possible, in more complex scenarios [9, IO]. We may divide both sides 
of this equation by 4 if this quantity does not pass through zero. This allows us to 
eliminate the time-dependence in the Friedmann equation [Eq. (2.7)] and derive the 
first-order, non-linear differential equations 

(H’)2 - ;K’H’ = -$c4V(q%) 

t&j = -2H’. 

(2.9) 
(2.10) 

A common framework for discussion of inflation is the slow-roll approximation, 
though let us emphasize here that in much of our treatment of inflaton dynamics we 
shall not need to resort to it. We can define two parameters, which we will denote as 
slow-roll parameters, bys 

$These definitions differ slightly from, and indeed improve upon. those of Refs. (II), (12) which 
were made using the potential rather than the Hubble parameter. As defined here they possess 
rather more elegant properties. 

5 



4 2 H” 

q = lG=-- u2 H’ 
(2.11) 

Slow-roll corresponds to {e? InI} < 1. These conditions correspond respectively to 
the cases when the first term in Eq. (2.9) and the first term in its +-derivative can be 
neglected. 

With these definitions, the end of inflation is given ezact/$ by~c = 1. A small 
value of n guarantees 

3H4 N -V’(4), (2.12) 

which is often called the slow-roll equation. 5 Although the terminology “slow-roll 
approximation” is normally used rather loosely, one could imagine carrying out a 
formalized perturbation expansion in the slow-roll parameters, and we shall refer to 
such results later. 

Density perturbations arise as the result of quantum-mechanical fluctuations of 
fields in de Sitter space. First, let’s consider scalar density fluctuations. To a good 
approximation we may treat the inflaton field 4 as a massless, minimally coupled 
field. (Of course the inflaton does have a mass, but inflation operates when the 
field is evolving through a “flat” region of the potential.) Just as fluctuations in the 
density field may be expanded in a Fourier series as in Eq. (2.1), the fluctuations in 
the inflaton field may be expanded in terms of its Fourier coefficients 6&k: 6+(x) o( 
/ 6& exp(-ik.x)d3!c. During inflation there is an event horizon as in de Sitter space, 
and quantum-mechanical fluctuations in the Fourier components of the inflaton field 
are given by (131 

k3 l6&12/2x2 = (H/2~r)~, (2.13) 

where H/2r plays a role similar to the Hawking temperature of black holes. Thus, 
when a given mode of the inflaton field leaves the Hubble radius during inflation, it 
has impressed upon it quantum mechanical fluctuations. In analogy to Eq. (2.3), what 
is called the fluctuations in the inflaton field on scale k is proportional to k3’2]6&], 
which by Eq. (2.13) is proportional to H/27r. Fluctuations in 4 lead to perturbations 
in the energy density: 

6P* = aHavla4). (2.14) 

Sow considering the fluctuations as a particular mode leaves the Hubble radius during 
inflation, we may construct the gauge invariant quantity C from Eq. (2.4) using the 
fact that during inflation ps + ps = &: 

(2.15) 

‘With the definition of ( in Refs. (ll), (12), this result is true only in the slow-roll approximation. 
‘Note the difference between slow-roll inflation and the slow-roll- equation.’ Slow-roll inflation is 

a model where inflation occurs where the scalar field is slowly evolving to its~ minimum, while the 
slow-roll equation implies that Q cati be neglected. 
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Now using Eq. (2.9) and Eq. (2.10), the amplitude of the density perturbation 
when it crosses the Hubble radius after inflation is 

mtc* P(q5) 
s %A&) = - v3’*(dJ) 

w/* pf’(c#l)l cK m&V’(q$)’ 

where H(4) and H’(4) are to be evaluated when the scale X crossed the Hubble 
radius during inflation. The constant m equals 2/5 or 4 if the perturbation re-enters 
during the matter or radiation dominated eras respectively.6 Now we wish to know 
the X-dependence of (6p/p)~, while the right-hand side of the equation is a function 
of Q when X crossed the Hubble radius during inflation. We may find the value of the 
scalar field when the scale X goes outside the Hubble r.adius in terms of the number 
of e-foldings of growth in the scale factor between Hubble radius crossing and the end 
of inflation. 

It is quite a simple matter to calculate the number of e-foldings of growth in the 
scale factor that occur as the scalar field rolls from a particular value C#J to the end of 
inflation &: 

(2.17) 

The slow-roll conditions guarantee a large number of e-foldings. The total amount of 
inflation is given by Nror = N(&), where & is the initial value of 4 at the start of 
inflation (when ii first becomes positive). In general, the number of e-folds between 
when a length scale X crossed the Hubble radius during inflation and the end of 
inflation is given by [ll] 

N(X) = 45 + ln(X/Mpc) + i ln(M/1014 GeV) + 5 ln(~an/lO1OGeV), (2.18) 

where M is the mass scale associated with the potential and Tnu is the ‘Ire-heat” tem- 
perature. Relating N(X) and N(d) from Eq. (2.17) result+s in an expression between 
# and A. Hopefully this dry formalism will become clear in the example discussed 
below. 

In addition to the scalar density perturbations caused by de Sitter fluctuations in 
the inflaton field, there are gravitational mode perturbations, g,,” -+ gFFw + h,,, 
caused by de Sitter fluctuations in the metric tensor [14,15]. Here, gcLy hw is the 
Friedmann-Robertson-Walker metric and h,, are the metric perturbations. That 
de Sitter space fluctuations should lead to fluctuations in the metric tensor is not 
surprising, since after all, gravitons are the propagating modes associated with trans- 
verse. traceless metric perturbations, and they too behave as minimally coupled scalar 

‘The 4 for radiation is appropriate to the uniform Hubble constant gauge. One occasionally 
sees a value 4/9 instead which is appropriate to the synchronous gauge. The matter domination 
factor is the same in either case. Note also that it is exact for matter domination, but for radiation 
domination it is only strictly true for modes much larger than the Hub& radius, and there will be 
corrections in the extrapolation down.to the size of the Hubble radius. 
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fields. The ~dimensionless tensor metric perturbations can be expressed in terms of 
tu-o graviton modes we will denote as h. Performing a Fourier decomposition of h, 
h(Z) 0: J 6hk exp(-ic . x’)d%, we can use the formalism for scalar field perturbations 
simply by the identification 6& 
Eq. (2.13)] 

+ hk/&, with resulting quantum fluctuations [cf. 

k31hkJi/2r2 = 2~*(H/2r)*. (2.19) 

While outside the Hubble radius, the amplitude of a given mode remains constant, 
so the amplitude of the dimensionless strain on scale X when it crosses the Hubble 
radius after inflation is given by 

~k3/2hk~~oR E AG(4) = &H(4) - 'z,t (2.20) 

where once again H(4) is to be evaluated when the scale X crossed the Hubble radius 
during inflation. 

.4s usual, it is convenient to illustrate the general features of inflation in the 
context of the simplest model, chaotic inflation [S], which is to inflationary cosmology 
what drosophila is to genetics. In chaotic inflation the inflaton potential is usually 
taken to have a simple polynomial form such as V(4) = Xd4, or V(b) = $c#?. 
For a concrete example, let us consider the simplest chaotic inflation model,.with 
potential V(d) = P*c$* [lS]. This model can be adequately solved in the slow-roll 
approximation, yielding 

4(t) = l$i - gt 

a(t) = IZieXp [z (@it - At*)] 

r = $h-$+p, (2.21) 

with inflation ending at rc& = fi as determined by e = 1, where E was defined in 
Eq. (2.11). The number of e-foldings between a scalar field value r$, and the end of 
inflation is just 

(2.22) 

Equating Eq. (2.22) and Fq. (2.18) relates C$ and A in this model for inflation: 

tc*@*2/4 = [45.5 + ln(X/Mpc)] (2.23) 

Using Eq. (2.16) and Eq. (2.20) As and AG are found to be 

As(X) = (&&/q [45.5 + ln(X/Mpc)] 

At(X)’ = (KP/~ [45.5 + ln(X/Mpc)]“*. .(2.24) 
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We can note three features that are common to a large number of (but not all) 
inflationary models. First, As and AC have different functional dependences upon X. 
Second, Ac and As increase with X. Finally, AS > AC, for scales of interest, although 
not by an enormous factor. 

To conclude this exercise, it is worth reminding the reader how little of the inflaton 
potential is available for reconstruction. The scales of cosmological interest at the 
present epoch lie in the range lh-’ Mpc for galaxies up to the current horizon size 
of 6000h-’ Mpc, where as usual h is Hubble’s constant in units of 100 km s-‘Mpc-‘. 
Taking the present horizon distance to have crossed the Hubble radius 60 e-foldings 
from the end of inflation, we see that we only,sample the small region of the potential 
l,.(4) foi 6 E [2.7mp,,3.0npr]. By any standards, the density perturbations from 
inflation we can actually sample represent an extremelysmall region of the potential. 
However it should be realized that although we have potential information about a 
small region of the potential, any information about the GUT potential, no matter 
how meager, is precious! Indeed, in the exploration of GUTS, cosmology may reveal 
the first “piece of the action.” 

We have one further piece of information, which is that we know that the remain- 
der of inflation must occur in the remaining section of the potential, with the scalar 
field coming to rest with V(4) =‘O. Although this represents a significant constraint 
on the potential on scales below those that large-scalestrueture observations can sam- 
ple, it does still leave an uncountable infinity of possible forms in this region. (One 
other constraint in this region comes from primordial black holes, whose abundance 
can in principle be calculated from the spectrum. Should black hole formation be 
copious, this constrains the spectrum at the mass scales corresponding to the size of 
detectable black holes, which are most prominent at around 1015g [17].) 

To conclude this section we call the reader’s attention to Figure 1, which illustrates 
the procedure. The figure illustrates a scalar field 4 rolling down a potential V(b). 
At some point in the evolution the slow-roll conditions break down and inflation 
ends. We can count back from this point the number of+foldings from the end of 
inflation, and use this information to find a relationship between the value of d in 
the evolution, and the length scale X leaving the Hubble radius at that point. While 
Q evolves, quantum fluctuations imprint scalar and gravity-wave perturbations upon 
each scale as it leaves the Hubble radius. The scalar perturbations depend upon 
the potential and its derivative, while the gravitational modes depend only upon the 
potential. In principle, AG and As are probed by observationsof large-scale structure 
and by measurements of CMBR fluctuations. The length scale, and corresponding 
angular scales, of several important observations are indicated. 

In the next section we will discuss the procedure for reversing the process discussed 
in this section; knowing At(X) and As(X), how does one determine V(4)? 
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III. RECONSTRUCTION OF THE POTENTIAL 

.4 number of authors [12,18,19,20] h ave recently emphasized the possibility that 
tensor modes excited during inflation, corresponding to gravitational waves, may play 
an important role in generating microwave background anisotropies. We thus develop 
an extension of the potential reconstruction methods of Hodges and Blumenthal [7] 
to include tensor as well as scalar modes. As discussed in the previous section, the 
expressions for the amplitudes of the scalar and tensor modes may be written as 

&;’ H*(b) 
As(d’) = &-3/2 IH’(+$)I 

AC(~) = &H(d), 

respectively. Note that the definition of As(d) in Eq. (3.1) is related to the power 
spectrum P’/*(k) defined in Hodges and Blumenthal [7] by 

P”*(k) = 3J27;As(44. (3.2) 

Utilizing the slow-roll approximation, there are useful expressions for the scale- 
dependence of the spectra, the spectral indices, to first-order in departure from slow- 
roll. These are 

1 - n G dln[A:(X)]/dlnA = 4~. - 2~. 

n, G dln[Ag(X)]/dlnX = 2~. (3.3) 

where “t” indicates evaluation at the time when the scale X passes outside the Hubble 
radius during inflation. In keeping with convention we drop the subscript S on the 
scalar mode index. Whenever the slow-roll conditions are closely obeyed, the spec- 
trum is close to scale invariant. When this is not true, there are in general corrections 
to the expressions for the fluctuations at the next order in an expansion in slow-roll 
parameters. 

The reader may have noticed that although we are keeping the equations of motion 
general (i.e., not subject to a slow-roll approximation), our expression for the scalar 
modes in Eq. (3.1) is an expression based on the slow-roll approximation, {e, In]} < 1. 
Ideally, one would like to completely abandon the slow-roll regime, because within it, 
the scalar spectrum is always close to the scale-invariant csse and the gravitational 
wave amplitude is always small, as we have seen. In practice, it seems very possible 
that should inflation have occurred, it may well have been pushing the outside of the 
slow-roll approximation envelope, and indeed much of the recent interest has been 
in the possibilities of both tilt and gravitational waves. True reconstruction assumes 
nothing about V(b) (flatness, etc.) except that it inflates. Unfortunately, although 
we are able to keep the dynamics completely general, general expressions are not 
available for the perturbation spectra. 

10 



Recently, an improvement has become available in the form of general expressions 
for the spectra to first-order in departure from slow-roll [21]. These give rise to 
“first-order corrected” spectra, which can be written 

con 
AS = [l - e + (2 - In2 - -r)(2e - r7)).4ycorr 

ACO” G = [l + (1 - In2 - y)e]Ayr, (3.4) 

where y N 0.577 is Euler’s constant. If slow-roll is breaking then these can rep- 
resent a significant improvement on the uncorrected results, but unfortunately the 
reconstruction loses its analytic tractability. The one exception to this is the case of 
power-law inflation -in that case the effects of the corrections cancel exactly [22] in 
the reconstruction equation Eq. (3.10) we derive below. 

Rather than resort immediately to numerical construction, we elect instead to 
make the operational choice that we shall adopt the slow-roll expressions for the 
spectra. A reconstruction can then be made subject to a consistency check that the 
slow-roll conditions are indeed satisfied; if not, thenour formalism will have to be 
enhanced to incorporate these improvements. 

It is clear that the ratio of amplitudes of the scalar and tensor modes is given by 

and if e < 1, then At/As < 1. It is possible that the COBE satellite is in fact 
observing a sum of contributions from the tensor and scalar fluctuations, as opposed 
to the pure scalar modes as originally thought. If these are uncorrelated and obey 
Gaussian statistics, the quantity of observational interest on large angular scales is 
the sum of the squares’ 

s*(4) = $A:(4 + A:(b). (3.6) 

Using m = 2/5 and recalling that e must be less than unity, we see immediately 
that the tensor modes dominate S’(d) if 2/25 < e < 1, or equivalently if ~/5 < 
]H’]/H < a/d. The largest relative tensor contribution to S*(4) obtains for e = 1: 
2AL/m*Ai = 2512 for m = 2/5. * Although it is not mandatory (one can break 
slow-roll only in the n parameter as in natural inflationj, the gravitational wave 
contribution is typically significant whenever there is a deviation from the slow-roll 
regime. 

On the other hand, the gravitational waves behave as relativistic matter when they 
re-enter the Hubble radius and do not interact with the other matter components. 

‘The relative weighting of A: and A& in this equation is that appropriate to large angle 
anisotropies (greater than 2”) in the slow-roll approximation. This is discussed in depth in Sec- 
tion VI, and exact weighting formulae provided there. 

‘If one is performing a theoretical reconstruction of the potential by specifying either AG or 
.4s, it is essential to ensure this condition is always satisfied for consjstency. Indeed. observations 
violating At/As < 1 would immedititely rule out the models we WC considering. 
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Consequently their energy density redshifts as am4, which implies that only scalar 
modes affect the CMBR anisotropy on angular scales 0 < 2”. However the anisotropy 
on these scales is also affected by the form of dark matter present. [For a recent 
discussion of some of these issues, see Ref. (23).] 

To proceed, we shall assume that the functional forms of As(X) and cl~(X) are 
known explicitly and defer until Section VI a discussion on the many difficulties 
associated with determining these quantities from observation. Our initial aim is 
to develop a framework which allows the intlaton potential to be determined. We 
consider general inflationary behavior for the field equations (2.9) and (2.10) and it 
proves convenient to parameterize the full set of solutions in terms of the function 
H(X(@)), where X is the-scale. Eqs. (3.1) now become 

As(X) = dw 8*3/2 H*(x) g g I I 
AC(X) = & fw). (3.7) 

Each length scale X is associated with a unique value of # when that scale crossed 
the Hubble radius during inflation. We will indicate that relationship by writing X(4). 
Now when a present length scale X crossed the Horizon radius during inflation with 
scalar field value 6, its physical size was H-‘(4). The physical size grew between 

.horizon crossing and today, and is now simply X(d) = H-‘(~)Q,J/u(~), where a,-, 
is the present value of the scale factor and a(d) was the value of the scale factor 
when the scale crossed the Hubble radius during inflation. Now we can make use of 
Eq. (2.17)~ to relate a(4) to the value of the scale factor at the end of inflation, a,: 
a(4) = a, exp[-N(b)]. This allows us to express X(d) as 

x(4) = exdW~)l =O 

H(b) T’ 
where-N(@) is given by Eq. (2.17). Differentiating Eq. (3.8) with respect to # yields 

and taking the ratio of Eqs. (3.7) implies9 

in AG dX dlnAc --= - 
~fi As I I dq? dX 

(3.9) 

(3.10) 

Sate that expression (2.10) in Hodges and Blumenthal [7] consists of only our first 
term in Eq. (3.9), indicating their assumption of slow-roll behavior. Substituting Eq. 
(3.9) into Eq. (3.10) gives 

x AG(A) = A:(X) 

AC(X) dX A;(X) - A&(X)’ 
(3.11) 

‘If one were to use the ‘first-order corrected’ expressions for the spectra discussed +lier, the 
right hand sidk of Eq. (3.10) would be multiplied by (1 --1.27~ + 1.27~). 
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Note that the left hand side is just equal to nc/2. This equation is similar to Eq. (9) 
in Davis et al. [19], provided one interprets their n as being the tensor index and not 
the scalar one. It clearly shows that there exists a correspondence between the scalar 
and tensor modes and is valid for an arbitrary interaction potential. In principle, if 
the scale dependence of either the scalar or tensor modes is known, the other can be 
determined from Eq. (3.11). If only At(X) is known, then As(X) follows immediately 
by differentiation. However, if only As(A) is known, a first-order differential equation 
must be solved to find the form of At(X). Thus, knowledge of only the scalar spectrum 
leaves an undetermined constant in the tensor spectrum. 

Once the form of the tensor spectrum is known, the potential, as parametrized by 
X. may be derived by substituting Eqs. (3.7) into Eq. (3.10). We find 

W(X)1 = K4 
16r3A;(X) 3 _ A;(X) 1 1 A2s(x). 

Finally, integration of Eq. (3.9) yields the function 6 = d(X) given by 

d(A) = *q $A;;;,y$& 

(3.12) 

(3.13) 

We have absorbed the integration constant by taking advantage of the freedom to 
shift ~4 by a constant.- The functional form of V(b) follows by inverting Eq. (3.13) 
and substituting the resu¶t into Eq. (3.12). It will also prove convenient at times to 
express 4 in terms of AC. If the functional form of As as a function of & is known, 
.+[AG], then using Eq. (3.11) in Eq. (3.13) gives 

,$ = l $ JAG dA:, “2’. G (3.14) 

The reconstruction equations are Eqs. (3.11), (3.12), and (3.13). It is worth 
emphasizing again ths+t for any choice of AG(X), there is a unique associated As(X) 
and V(#) (at least in the slow-roll approximation), but that the converse is not true. 
As shown by Hodges and Blumenthal [7], the scalar spectrum leaves an undetermined 
constant in the tensor spectrum, and as the equation relating V and AC is non-linear, 
different choices of this constant might lead to functionally different forms of the 
potential [24]. In order to reconstruct the potential from scalar modes, one needs 
an additional piece of information. Technically what is needed is knowledge of the 
functional dependence of As upon AG, As[Ac]. This can be fixed either by knowledge 
of the amplitude of the tensor spectrum at a single scale, which would fix AC uniquely, 
or knowledge that As is independent of AC. .4s AG cannot be independent of X, the 
latter possibility arises only if As(X) is constant. 

It is also worth emphasising consistency, which can provide an important check. If 
our inflationary assumptions are correct, then the two spectra are intimately related 
as illustrated above. However, observations are typically subject to both systematic 
and statistical errors, add within these one might find that measured~spectra are not 
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exactly consistent. Were one to be confronted with such data, one would like some 
prescription by which to decide how to best reconcile the data, to generate some kind 
of “maximum likelihood” reconstruction. Such a procedure would presumably also 
allow one to demonstrate that the measured spectra were not compatible with each 
other within the inflationary paradigm, if indeed inflation were not the correct source 
of the fluctuations. In practice, the situation is skewed by the scalar fluctuations being 
considerably easier to observe than their tensor counterparts, and it seems prudent 
to await the arrival of considerably better data before properly contemplating how 
one .would deal with the possibility of marginally incompatible observations. 

The reconstruction procedure simplifies if At(X) < As(X) (i.e., e < 1): 

X d&(X) = A;(X) 
-4,(X) dX A:(X) 4(X) = l $/“e!dJ 

W(U = %A;( X). 

We concbrde this section by summarizing the conditions necessary for the pertur- 
bation amplitudes to increase or decrease with increasing wavelength. Such informa- 
tion-alone can place st~rong limits on the functional form of the potential. The scales 
that first cross the Hubble radius are the last to m-enter during the radiation or mat- 
ter dominated eras (see Fig. 1). Consequently, the amplitudes of the modes increase 
(decrease) with wavelength if they decrease (increase) with time during inflation. 
Immediately we conclude that 

for all sub-inflationary (h < 0) models. One requires an era of super-inflation’( k > 0) 
if this inequality is to be reversed. Super-inflation is only possible with a minimally 
coupled self-interacting scalar field if the spatial hypersurfaces of the manifold have 
positive-definite curvature [9]. An observation indicating dAc/dX < 0 would there- 
fore require some of the main assumptions made in the inflationary analysis to-be 
significantfy altered. Within the context of the FRW Universe, for example, one 
would need to extend the gravitational sector of the theory beyond general relativ- 
ity, or assume that the value of the density parameter was significantly larger than 
unity at first Hubble radius crossing. Indeed, Eq. (3.16) implies that any ;-%cts~of 
t,he gravitational waves on the CMBR anisotropy will always be enhanced on larger 
angular scales in the models considered here. 

On the other hand, it is possible for the scalar spectrum to decrease with wave- 
length. By .writing dAs/dX = (dAs/db)(d4/dX) and employing Eqs. (3.7) and (3.9), 
one ‘finds that a necessary and sufficient condition for scalar modes to be decre&ng 
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in amplitude with increasing wavelength is 

1 H” 
<;rK. (3.17) 

In terms of the slow-roll parameters, this can be written as 26 < n. As E is positive 
by definition, this condition is not easy to satisfy, particularly in the late stages 
of inflation where e must increase towards unity. A necessary, but not sufficient, 
condition for Eq. (3.17) to hold is that the potential be convez, V” > 0. Therefore, if 
the field is located near a local maximum of the potential, as in natural inflation [25] 
for example, t~he amplitude will always increase with X. 

In conclusion, it is clear that any scale dependence for the spectrum of gravita- 
tional waves is possible in principle, subject to condition (3.16). Secondly, the most 
useful parameter mathematically in the reconstruction process is AG(X), because once 
this is known the potential can be derived in a rather straightforward manner. 

IV. RECONSTRUCTING THE FULL POTENTIAL 

Before proceeding to analyze the possibilities for obtaining the-spectra observa- 
tionally, we shall first illustrate some examples in reconstruction in order to demon- 
strate the techniques. We shall examine four cases of.increasing complexity. These 
four cases will reconstruct to familiar potentials. 

A. Polynomial potentials 

Let us first reconstruct the p*$* chaotic potential model worked out in Section II. 
We will then generalize the result for construction of polynomial potentials. 

Recall that using the slow-roll approximation for the potential V(&) = p*$~~ we 
found perturbation spectra AG(X) = a[,0 + ln(X/Xa)]“2 and As(X) = fiAg(X)/a. 
with o2 = h-*p2/127r3, 0 = 45.5, and Xs = 1 Mpc. We must keep in mind that 
these solutions were obtained in the slow-roll approximation. Since the slow-roll 
approximation implies that Ac < As, we must reconstruct using Eqs. (3.15). 

First, let us reconstruct assuming that observations provide two pieces of infor- 
mation: AG(A) is of the form At(X) = ~@+ln(X/Xe)]t/~, and At(X) < As(X). Then 
the differential equation for dAc(X)/dA in Eq. (3.15) can be used to yield a unique 
scalar spectrum, As(X) = fiAi(X)/ a, as anticipated from the calculation in Section 
II. (Of course As(X) could be found without the assumption that &(X) < As(X), 
but it would be different.) 

Now that we know both AG(X) and As(X), we can find 4(X) from the. second 
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equation in Eq. (3.15): 

0 + ln(X/Xe) = ~*+*2/4. (4.1) 

Finally, we can use the last equation in the slow-roll reconstruction procedure to 
give 

‘(4) = T&(X) = $L*[a + ln(~/~,)] - 1~~3a~42, (4.2) 

Exactly as expected, the potential is of the form V(4) = p242, with p2 = 12n3a2/ti2. 
Thus. we have successfully reconstructed the potential. 

Ll:e began with the assumption that AG(X) is known. If we had started with the 
assumption that the scalar spectrum is known and of the form As(X) = &a[o + 
ln(X/Xs)], the differential equation for AG(X) would give 

Ac’( X) = ve2[/3 + ln(X/Xa)]-’ + C, (4.3) 

where C is arbitrary. Fixing Ac(Xo) = ap l/* fixes C = 0, and reconstruction would 
proceed exactly as before. Other choices of C would lead to different potentials, with 
different predictions for AC. 

Now let’s consider a slightly more general tensor mode spectrum: Ac = a[a + 
In(X/&)]y with y = constant, again with AC(X) < As(X). The differential equation 
for dAc( X)/d &es 

As(X) = [a//J [p + ln(X/Xe)](27+11’2. (4.4) 

The solution for b(X) is the same as Eq. (4.1) with IE + ~/fi. Using this in the 
reconstruction of the potential gives 

v(b) = $A;($ _ 48r3 2 -64”‘. K4(‘-7) @J-,)2’ 
(4.5) 

An oft studied case is y = 1, which reconstructs to V(4) = Xp with scalar and tensor 
perturbations 

-4&,X) = 0 IP + ln(VA0)l 

As(,X) = a (P + ln(X/Xo)]3’2. 

B. Harrison-Zel’dovich potentials 

(4.6) 

Let us now look at potentials which give rise to the Harrison-Zel’dovich spectrum, 
ils(X) = as = constant. Such spectra are actually rather unlikely; most inflationary 
models exhibit a decrease in amplitude with decreasing scale which is significant now 
given the accuracy of observations. 
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We start reconstruction by considering the differential equation relating AC and 
iis [Eq. (3.11)]: 

X dAc(X) A;(X) 

k(X) &A = u's - A&(A)' 

which has solution 

4 
ln(x/xo) = -T 

1 1 
m - z - In(AG(X)/A,). 

(4.7) 

In general there is no closed-form expression for AC(A). 
\Ve can reconstruct the potential in two steps. Since As is a constant, we can find 

AG in terms of 4 by Eq. (3.14): 

A;(@) = 2a3~;‘&. (4.9) 

Now we can substitute this into the equation for V in Eq. (3.12) to give 

V(4) = $2; 3-L - 
1 (d/d2 GAY 1 (4.10) 

where 4 = fi/n. 
It should be emphasized-that this is the only inflaton potential which leads to an 

ezactly scale-invariant spectrum of scalar density fluctuations. It arises as a special 
case of “intermediate” inflation [26], where the scale factor expands as a-a exp(t’) 
with 0 < f < 1; the above potential corresponds to choosing f = 2/3. In contrast, 
the spectrum of gravitational waves is not scale invariant. It is generally true that 
inflation cannot lead to scalar and tensor perturbation spectra that are both constant 
in X. It is interesting to note that potentials of this form arise when supersymmetry 
is spontaneously broken [27]. 

We can reinterpret these results in terms of the slow-roll parameters. -It is clear 
that to obtain a flat spectrum we require 26 = n, but e and 7 are not determined 
separately. There are some interesting limiting cases. If we allow as !o tend to 
infinity, this corresponds to e tending to zero. In this limit the potential becomes 
flat, with its constant value being that which gives the desired gravitational wave 
amplitude. As as is reduced from infinity, e increases away from zero pres&ing 26 = 
n. Once e becomes big enough, there will be slow-roll corrections which destroy the 
flatness of the spectrum. It is interesting to note that although slow-roll automatically 
guarantees a spectrum which is close to flat, it is perfectly possible for a spectrum 
close to flatness to arise when the slow-roll conditions are not well obeyed. 

These potentials, which exhibit little tilt but which can have substantial gravita- 
tional waves, are also of interest in that they complete a square of possible behaviors 
in different inflationary models, as shown in Table 1. Indeed, such a model performs 
well on most large-scale structure data with the exception of intermediate-scale galaxy 
clustering data. 
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Scalar Small gravitational Large gravitational 
Spectrum wave contribution 1 wave contribution 

Nearly flat Polynomial Harrison-Zel’dovich 
spectrum potentials potential 

Tilted Hyperbolic Exponential 
spectrum potentials potentials 

Table 1: Possible behaviors for spectra in several inflationary models. 

C. Exponential potentials 

Generalizing away from the flat scalar spectrum, the simplest (and possibly most 
likely) case is where the amplitudes have a simple power-law dependence, 

A,-(~) = +4V~o)‘, v # 0, (4.11) 

where as is a constant. The recent measurements from CO&II [l] alone provide the 
constraint -0.3 < u < 0.2 at the l-sigma level. Incorporating specific choices of dark 
matter and including clustering data allows one to do better; for instance in a cold 
dark matter model (CDM) it has been shown (281 that v < 0.15 at 95% confidenc~e in 
models with no gravitational waves, and V~ < 0.08 (again 95% confidence) in power-law 
inflation which does have significant gravitational wave production. 

At(X) satisfies the differential equation Eq. (3.11) 

X dAc(A) = A&(X) 

AC(X) dX u’s( X/XO)~~ -~ A$(X) 
(4.12) 

Obtaining the general form for At(A) is difficult. However there are some specific 
solutions which are of interest in that they relate to known examples of inflationary 
potentials. One obvious solution to Eq. (4.12) is AG(,~) = as(X/Xa)“, with 

u 
a;= - 

( > 1+v 
4, Y # 0. 

Note that in this simple case, AG/A~ = as/as, a constant independent of scale, but 
that as v + 0 the magnitude of the tensor contribution reduces significantly. We can 
simply integrate Eq. (3.13) to obtain 

@(A)=*cln($-)vWZ 

Substituting this expression into Eq. (3.12) gives the final result 

V(@)~ = hexp(*t0/6), 
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with 

167r3a2 2~ + 3 
VOv-y~. 

v+l’ 
(4.16) 

Thus we see that a power-law behavior for the amplitude of the scalar and tensor 
modes is obtained from an exponential potential, and is therefore consistent with 
power-law models of in5ation [lo]. 

It is interesting to note that this result for 4 coincides with the exact result for 
power-law inflation, whereas if slow-roll were strictly applied one would get 4-l = 
~6, being the above to lowest order in V. Thus our hybrid of general equations of 
motion but slow-roll spectrum definitions certainly offers improved results over the 
usual slow-roll method in this case. 

Note that as v --) +co the relative slope of the potential, as determined by o, 
becomes independent of V. The limit a(v = 00) = &c corresponds to the Milne 
Universe a(t) CK t and represents the limiting solution for in5ation to occur. As v is 
increased in Eq. (4.15) the only real effect is to increase the height of the potential 
through the Vs term. 

Rather than the equal power behavior, consider the more general example 

As(X) = as(~/~o)” ; AC(X) = &/~oK (4.17) 

where os and a~ are constants. It is trivial-to show that these spectra are solutions to 
Eq. (3.11) or the differential equation in Eq. (3.15) only if D = Y. Thus, observation 
of spectra that are exact power-laws with different powers would rule out the class of 
in5ationary models we consider as the source of the perturbations. 

D. Hyperbolic potentials 

Let us return to the differential equation for AG(X) in Eq. (4.12), but in the 
AG(X) < As(X) limit. The equation becomes 

This equation has general solution in terms of an undetermined constant p: 

2” 
&A) = a$, (““) 

1+ P(~I~o)zy 

(4.18) 

(4.19) 

We will see that different functional forms for the potential reconstruct depending 
upon the sign of 0. Of course 3 can be determined by measurement of AG on any 
one-scale. 

As fi 9 0 we recover the power-law spectra for AG(X) and As(X) with equal power- 
law slopes. This case was just considered above. For small scales, 141 (X/X,,)*” < 1, 
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we also recover the above case of equal power-law slopes for either choice of the sign 
of 0. For 4 > 0 we can take the limit of large scales, fl(X/Xo)*” > 1, in which case 
At(X) asymptotically approaches a constant. 

Recall that in the AG < As reconstruction procedure, Eq. (3.15) gives 

V[$(X)] = FA;[X). 

Now we must find 4(X) and invert. 
The integral expression for 4(X) from Eq. (3.15) is 

1 
414 = 2qA $1, * ]p](~~/~,)z”]w’ 

with “+” for positive 0 and “-n foinegative p. The constant 3 is the same as that of 
the previous subsection (in the slow-roll approximation), 4-l = ~6. The solutions 
to the integral are 

414 = 

i 

-2Arccsch [J~~(x/x~)Y] b > 0 

-2Arcsech [ Jjj (x/x~)u] 

(4.22) 
p < 0. 

These expressions are easily inverted to give X(4), and the potential reconstructs to 

{ 

cash-‘(4/2$) p > 0 
V(b) = v, 

sinh-*(4/2$) p < 0, 
(4.23) 

with VO = 48s3a$/n41PI. 
Note that for &/$ > 1, V(4) cc exp(-#/$) for both choices of the sign of fl. 

Large values of 4 cross theHubble radius late in inflation and correspond to small X. 
Notice from Eq. (4.19) that AC + X” &s X -+ 0. We have already reconstructed the 
potential that res_ults from this AC(X) as V(d/$) cc exp(-cp/$), which agrees with 
the definition of $J given in Eq. (4.16) when u << 1. (The Gsumption that AG < As 
is equivalent to this condition). 

We can also expand Eq. (4.23) for small 4: 

V(@) - v, 
{ 

-1 - (@l/$)2/4 + . ‘. p > 0 

4(4/$)-Z + . . . 
(4.24) 

p < 0. 

The positive ,D case is also an approximation to a potential of ~the form V(b) 0: 
1 + COS($J/@) &studied in a type of model called natural in5ation [25]. 

The purpose of the above reconstruction exercises is to demonstrate how the 
reconstruction process proceeds. We have reconstructed several popular inflationary 
poientials from knowledge of either the scalar or tensor perturbation spectrum. Before 
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turning to the prospectus for actually determining AS and AG from observational 
data, in the next section we discuss a “perturbative” approach in reconstruction of 
the potential. 

V. RECONSTRUCTING A PIECE OF THE POTENTIAL 

The reconstruction program described in the previous section is quite ambitious, 
as it depends upon knowledge of the functional forms of At(X) and/or As(X) over a 
range of X. In this section we will outline a less ambitious, but more realistic program. 
We will assume that we have information only about the scalar and tensor spectra 
(and their first and second derivatives) at a single scale Xs, and see what we can learn 
about the potential. lo This “perturbative” approach to reconstruction may be useful 
in the very near future [23]. 

If we know Ac(&) and As(&) at some length scale Xs (which left the Hubble 
radius during inflation when the value of the scalar field was #co), we can use Eqs. 
(3.9) and (3.13) to find that 

’ 1 dX -- 
A @ A=Ao 

= *PA: - A%o) 
fi -4d~o)Ac(~o) ’ 

-dAc( X) 1 A%o) 
dX .4=Ao = s;;; A$(&) - A$(Xo)’ 

V(h) immediately follows from Ac( X0) and As( X0): 

V(b) = T 3A;Uo) - 
A&(Xo) 

I Ai . 

With the approximation that Ao(X,) < As(Xo), the expression simplifies to 

-TV = 4z3 -&Ao) [I.. (z;;“;)] . 

(5.1) 

(5.2) 

(5.3) 

Further reconstruction of the potential requires more than simply knowledge of 
the amplitudes of the scalar and tensor perturbations at X0, we must know the first 
derivative. or the spectral index of the scalar spectrum at X = X0: 

1 d&-(X) l-n 1 - 120 

As(X) dA .\=A0 = - 2x A=& =2x0. (5.4) 

‘ “In practice, observing the derivatives at a single point may be just as difficult as measuring the 
shape over a range of scales. though one might hope for adequate information to be obtained from 
a significantly smaller range of scales (and with more freedom to coarse-grain), perhaps eye” those 
accessible frixn a single experiment. 
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Using Eqs. (5.1) and (5.2) we can find the first derivative of the potential: 

44X0) 
1 &(X0) 

(5.5) 
,4=x0 

This expression also simplifies in the AG(XO) < As(&) limit: 

v’(r$g) = f ~~(i-no) 1+0 
[ (I%:;)] (5.6) 

Repeated differentiation of this expression with respect to C#I enables one to derive 
the higher derivatives. In principle, the potential can then be expanded as a Taylor 
series about the point &. The full expression for the second derivative is 

AI 1 
-2(5 - n”)A;(Ao) Ai - A;(Xo) 

+(5 - no)(l - n0) 

where nb G dne/dXe. If one makes the approximation that Ac(Xo) Q As(&), it 
follows that this expression simplifies considerably: 

V”(q$J) = $$;:o”i [4(no - 4)2A;(X,) - (1 - no)(7 T no)&Xo)] 
s 

(5.8) 

Note that (1 - no) is in principle of the same order as AL/AZ. 
It is hoped that observations will soon be of a sufficient standard to measure 

AG(&), As(&) and ne at a particular point. One may then be able to establish 
whether the potential is convex or concave with the use of Eq. (5.8). The potential is 
convex in any model where the scalar spectrum decreases with increasing~wavelength. 
Note though that this is only sufficient, not necessary. Indeed, most popular models 
such as polynomial and exponential potentials are convex yet still feature a spectrum 
increasing with increasing wavelength. In models where the: tensor contribution is 
negligible, the only important parameter is the sign of 1 - no,.since no > 7 is already 
ruled out by observation 
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.4nother quantity of interest that may soon be determined observationally is the 
dimensionful parameter V(&)/lV’(&)l. This is determined by the relative amplitudes 
of the scalar and tensor fluctuations at a given scale via Q. (3.5). In this sense, such 
a quantity yields information regarding a mass scale at which these processes are 
occurring during inflation. In the case of polynomial potentials it uniquely determines 
&. For exponential and hyperbolic examples, however, it measures the steepness of 
the potentials as given by 4. 

Although the value of & is undetermined because of the inherent freedom to shift 
4 by a constant, some information of the range of 4 covered by observations of the 
spectra on scales between Xe and Xi can be recovered. We can start with Eq. (3.13), 
the reconstruction equation for $(X) and find 

41 - +, = l $ /*I’ F A;;;,;‘!‘yJ;,), 
where 4, = 4(X1). Then, we can then use a simple trapezoidal integration rule to 
find .$i - & in terms of the spectra at X0 and Xi. 

VI. DETERMINING THE PRIMEVAL SPECTRUM 

Conventionally, one chooses a particular theory, assesses the spectrum it predicts 
and attempts a comparison between its predictions and the observed Universe. For 
our purposes here, one must be more ambitious and execute this procedure in reverse 
order, proceeding from the observations to the primeval spectrum, and thence to 
the underlying inflationary theory. As well as covering the current observational 
position, we intend to survey the possibilities inherent in future experiments, both 
proposed and conjectural, in determining-the primeval spectrum.” In keeping with 
our inflationary motivation, we assume throighout that we have a universe of critical 
density. 

The range of scales of interest stretches from the present horizon scale, 6000/t-’ 
Mpc, down to about lh-’ Mpc, the scale which contains roughly enough matter to 
form a typical galaxy. l2 On the microwave sky, an angle of 0 (for small enough 0) sam- 
ples linear scales of 100h-1(B/1”)Mpc.‘3 For purposes of discussion, it is convenient 
to split this range into three separate regions. 

l Large scales: 6000/r-’ Mpc - N 200/i-i Mpc: 
These scales entered the horizon after the decoupling of the microwave back- 

“For an extensive review of large-scale structure studies, see the papers of Efstathiou [29] and 
Liddle and Lyth 1281. 

“The present density of the Universe is p. = 3H,2/8aG z 2X-l Y 10”Mo(h-‘Mpc)-S. where 
MO is the solar mass. 

“The surface of last scattering is located scnne 213OX,t’ M pc inside the horizon distance. 
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ground. Except in models with peculiar matter contents, perturbations on these 
scales have not been affected by any physical processes, and the spectrum retains 
its original form. At present the perturbations are still very small, growing in 
the linear regime without mode coupling. Here, we are still seeing the primeval. 
spectrum. 

. Intermediate scales: - 200h-’ Mpc --t 8h-’ Mpc: 
These scales remain in the linear regime, and their gravitational growth is easily 
calculable. However, they have been seriously influenced by the matter content 
of the-universe, in a way normally specified by a transfer function, which mea- 
sures the decrease in the density contrast relative to the value it would have 
had-if the primeval spectrum had been unaffected. Even in CDM models, where 
the only effect is the suppression of growth due to the Universe not being com- 
pletely matter dominated at the time of horizon entry, this effect is at the 25% 
level at 200h-’ Mpc. To reconstruct the primeval spectrum on these scales, it 
is thus essential to have a strong understanding of the matter content of the 
Universe, including dark matter, and of its influence on the growth of density 
perturbations. 

l Small scales: 8h-’ Mpc -+ lh-’ Mpc: 
On these scales the density contrast has reached the nonlinear regime, cou- 
pling together modes at different wavenumbers, and it is no longer easy tom 
calculate the evolution of the density contrast. This can be attempted either 
by an approximation scheme such as the Zel’dovich approximation [29,30], or 
more practically via N-body simulations [31]. Further, hydrodynamic effects 
associated with the nonlinear behavior can come into play, giving rise to an 
extremely complex problem with important non-gravitational effects. Again, 
the transfer function plays a crucial role on these scales. In hot dark matter 
models, perturbations on these scales are most likely almost completely erased 
by freie streaming, and hence no information can be expected to be available 
(far less than the rather detailed information reconstruction would require). In 
a CDM model, enough residual perturbations may remain on these scales for 
useful information to be obtained. 

Let us now-consider each range of scales in turn, starting with the largest scales 
and working down to the smallest scales. 

A. Large scales (6000h-’ Mpc -+ _ 2OOh-l Mpc): 

1Vithout doubt the most important form of observation on large scales for the near 
future is large-angle microwave background anisotropies. Scales of a couple of degrees. 
or more fall int.o our definition of large scales. Such measurements are pf the purest 
form available&anisotropy experiments directly measure the gravitational potential 
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at different parts of the sky, on scales where the spectrum retains its primeval form. 
Such measurements also are of interest in that the tensor modes may contribute. 
Tensor modes do not participate in structure formation and most measurements we 
shall discuss are oblivious to them. Further, tensor modes inside the horizon redshift 
away relative to matter, and so tensor modes also fail to participate in small-angle 
microwave background anisotropies. 

Nevertheless, these large-scale measurements still exhibit one crucial and ulti- 
mately uncircumventable problem. On the largest scales, the number of statistically 
independent sample measurements that can be made is small. Given that the un- 
derlying inflationary fluctuations are stochastic, one obtains only a limited set of 
realizations from the complete probability distribution function. Such a subset may 
insufficiently specify the underlying distribution, which is the quantity predicted by 
an inflationary model, for our purposes. This effect, which has come to be known 
as the cosmic variance, is an important matter of principle, being a source of un- 
certainty which remains even if perfectly accurate experiments could be carried out. 
At any stage in. the history of the Universe, it is impossible to accurately specify 
the properties (most significantly the mean, which is what the spectrum specifies 
assuming gaussian statistics) of the probability distribution function pertaining to 
perturbations on scales close to that of the observable Universe. 

Observations other than microwave background anisotropies appear confined to 
the long term future. .Even such an ambitious project as the Sloan Digital Sky Sur- 
vey (SDSS) [32) can only reach out to perhaps 500h-’ Mpc, which can only touch 
the lower end of our specified large scales. However, in order to specify the fluctu- 
ations accurately, one needs many statistically independent regions (100 Seems an 
optimistic lower estimate) which means that the SDSS may not specify the spectrum 
with sufficient accuracy above perhaps lOOh-’ Mpc. 

A much more crucial issue is that the SDSS will measure the galaxy distribution 
power spectrum, not the mass distribution power spectrum that is our inflationary 
prediction. In modern work it is taken almost completely for granted that these 
are not the same, and it seems likely too that a bias parameter (relating the two 
by a multiplicative constant) which remains scale independent over a wide range of 
scales may be hopelessly unrealistic. Consequently, converting from the galaxy power 
spectrum back to that-of the matter may require a detailed knowledge of the process 
of galaxy formation and the environmental factors around distant galaxies. Once 
one attempts to reach yet further galaxies with a long look-back time, one must also 
understand something about evolutionary effects on galaxies. As we shall discuss in 
the section on intermediate scales, it seems likely that peculiar velocity data may be 
rather more informative than the statistics of the galaxy distribution. 

A more useful tool for large scales is microwave background anisotropies on large 
angular scales. Our formalism closely follows that of Scaramella and Vittorio [33]. 
On large angular scales, the most convenient tool for studying microwave background 
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anisotropies is the expansion into spherical harmonics 

$3x, e, d) = 9 2 %4x) y:ce> 6), 
,=* m=-l 

(‘5.1) 

where .4 and d are the usual spherical polars and x is the observer position. With 
spherical harmonics defined as in [34], the reality condition is 

W.-m = (-l)“C&. (6.2) 

In the expansion, the unobservable monopole term has been removed. The dipole 
term has also been completely subtracted; the intrinsic dipole on the sky cannot 
be separated from that induced by our peculiar velocity relative to the comoving 
frame, though it is easy to show that for adiabatic perturbations it will be negligible 
compared to it. 

With gaussian statistics for the density perturbations, the coefficients al,(x) are 
gaussian distributed stochastic random variables of position, with zero mean and 
rotationally invariant variance depending only on 1 

(a,,(x)) = 0 ; (ladx)12) = c:. (6.3) 

It is crucial to note that a single ob>erver such as ourselves sees a single realization 
from the probability distribution for the’q,. The observed multipoles as measured 
from a single point are defined as 

and indeed the temperature autocorrelation function can be written in terms of these 

C(cr) = (+wl) $8*, &$. = 2 6xPbJs4, _ 1=2 
(6.5) 

where the average is over all directions on a single observer sky separated by an angle 
o, and Pr(cos Q) is a Legendre polynomial. The expectation for the Qf, averaged over 
all observer positions, is just 

(Q:) = -&(21+ 1)X:. 

A given model predicts values for the-averaged quantities (Q:). On large angular 
scales, corresponding to the lowest harmonics, only the Sachs-Wolfe effect operates. 
One has two terms corresponding to the scalar and tensor modes-we denote these 
contributions by square brackets. The scalar term is given by the integral 

Cy[S] = $ im $jf (2/;/aH) -$-.j:T*(k), 
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where j, is a spherical Bessel function and the transfer function T(k) is normalized to 
one on large scales. .4s an example, a power-law spectrum kAi o( k” on scales where 
the transfer function is sufficiently close to unity gives the oft-quoted 

C@] = Cgs] I- (I + (n - 1)/2) r ((9 - n)/2) 
l-(l-+(5-n)/2) r((3+n)/2)’ 

which for a flat n = 1 spectrum gives the simple C:[S] = 6C$S]/I(I + 1). However, 
true reconstruction requires the integral expression. 

The equivalent expression for the tensor modes is a rather complicated multi- 
ple integral which usually must be calculated numerically [14,15,20]. Under many 
circumstances (Lucchin, Matarrese and Mollerach [20] suggest 0.5 < n < 1 for power- 
law inflation) there is a helpful approximation which is that the ratio C:[S]/C~[T] is 
independent of 1 and given by 

For many purposes this is a perfectly adequate expression, but for true reconstruction 
of the inflaton potential, one must of course use the exact integral expression. 

On the sky, one does not observe each contribution to the multipoles separately. 
-4s uncorrelated stocfiastic variables, the expectations add in quadrature to give 

c: = c:[s] + Ef[Tj. (6.10) 

For reconstruction purposes, there are two obstructions of principle. These are 

l Even if one could measure the Cf exactly, the last scattering surface being closed 
means one obtains only a discrete set of information-a finite number of the 
Cc covering some effective range of scales .I4 There will thus be an uncountably 
infinite set of,ppasible spectra which predict exactly the same set of Cl. 

l One cannot measure the Cf exactly. What one can measure is a single realiza- 
tion, the Qf. As a sum of 21+ 1 gaussian random variables, Qf has a probability 
distribution which is a x2 distribution with 21+1 degrees of freedom, &+r. The 
variance of this distribution is given by 

Var[QF] = &'Q:", 

though one should remember that the distribution is not symmetric. Each Qf 
is a single realization from that distribution. when we really want to know the 
mean. From a single observer point, there is no way of obtaining that mean, and 

“The I-th multipole is of@~ taken as corresponding roughly to a scale kl z IHo/2Mpc-’ = 
lh/6OOOMpc-‘. 
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one can only draw statistical conclusions based on what can be measured. Thus, 
a larger set of spectra which give different sets of CT can still give statistically 
indistinguishable sets of Qf. The variance falls with increasing I but is significant 
right across the range of large scales. This is illustrated in Figure 2. 

Finally, it should be mentioned that. measurements of the polarization of the 
CMBR on large scales may allow a separate determination of the gravitational wave 
spectrum to be made [35]. Such an effect is potentially detectable if gravitational 
waves dominate the COEE result and the polarization is of the order of lo%, say. 
If the waves only contribute 10% of the COBE signal, for example, then only 10% 

of 10% is polarized, which significantly reduces the overall effect. Unfortunately, 
reconstruction of the potential must await a positive detection of such an effect, so 
we will not discuss it further. 

B. Intermediate scales (- 200h-L Mpc - gh-1 Mp’: ,: 

It is on intermediate scales that determination of the primeval spectrum is most 
promising, though sadly these scales only encompass about 3 e-foldings. Here a range 
of promising observations are available, particularly towards the small end of the range 
of scales. In terms of technical difficulties in interpreting measurements, a trade-off 
has been made compared to large scales;.on the plus side, the cosmic variance is a 
much less important player as far more independent samples are available, while on 
the minus side the spectrum has been severely affected by physical processes and thus 
has moved a step away from its primeval form.r5 

1. Intermediate-scale microwave background anisotropies 

In the absence of reionization, the relevant angular scales are from about 2” down 
to about 5 arcminutes. (Should reionization occur, a lot of the information on these 
scales could be erased or amended in difbcult to calculate ways.) Several experiments 
are active in this range, including the South Pole and MAX experiments, but as none 
have yet published a positive detection they are not of direct interest to us here at 
present. Indeed, even with a detection many of these ground based experiments are 
unable to give results with the statistical quality we would require due to the small 
sky coverage which is typically involved. 

Unlike the large-scale anisotropy, one cannot write down a simple expression for 
the intermediate-scale anisotropies, even if-bit is assumed that one has already incorpo- 
rated the effect of dark matter on the growth of perturbations via a transfer function. 

“In the distant future, when the horizon size is vastly greater than at the present, there will be 
a range of scales above 200h-’ Mpc where the cosmic variance remains small and the spectrum 
retains it primeval form. Such a region would be an ideal place to carry out reconstruction, but 
unfortunately dqes not exist at the present epo+t 
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The reason is due to the complexity of physical processes operating. A case in point 
is the expected anisotropy (specified by the Cy, but now for larger I) in the CDM 
model (n = 1). as calculated in detail by Bond and Efstathiou [36]. 

On large scales, 1*X: is approximately independent of 1 as we have seen. Once 
we get into the intermediate regime, 1*X: exhibits a much more complicated form, 
which is dominated by a strong peak at around I = 200. This is induced by Thomson 
scattering from moving electrons at the time of recombination. Bond and Efstathiou’s 
calculation gives a peak height around 6 times as high as the extrapolated Sachs-Wolfe 
effect. Beyond the first peak is a smaller subsidiary peak at I N 800. 

In their calculation, Bond and Efstathiou assumed both the primeval spectrum 
and the form of the dark matter. For reconstruction purposes, it seems that a good 
knowledge of the form of dark matter is a pre-requisite, in order that these processes 
can be calculated at all. Of course, given the number of active and proposed dark 
matter search experiments, one should be optimistic that this information will be 
obtained in the not too distant future. However, even with this information, the 
complexity of the calculation makes it hard to conceive of a way of inverting it, 
should a good experimental knowledge of the Cf (I E [30,750]) be obtained. Once 
again, it’s much easier to compare a given theory with observation than to extract a 
theory from observation. 

One of the inseresting applications of these results might be in combination with 
the large-scale measurements. The peak on intermediate scales is due only to pro- 
cesses affecting the scalar modes, whereas we have pointed out that the large-scale 
Sachs-Wolfe effect is a combination of scalar and tensor modes. On large scales, 
one cannot immediately discover the relative normalizations of the two contributions. 
However, if the dark matter is sufficiently well understood, the height of the peak 
in the intermediate regime gives this information. Should it prove that the tensors 
do play a significant role, then this would be a very interesting result as it immedi- 
ately excludes slow-roll potentials for the regime corresponding to the largest scales. 
Should the tensoTs prove negligible, then although the conclusions are less dramatic 
one has an easier inversion problem on large scales as one can concentrate solely on 
scalar modes. 

2.. Galaxy clustering in the optical and infrared 

A. Redshift surveys in the optical. 
Over the last decade, enormous leaps have been made in our understanding of the 

distribution of galaxies in the Universe from various redshift surveys. Most prominent 
is doubtless the ongoing Center for Astrophysics (CfA) survey [37], which aims to form 
a complete catalogue of galaxy redshifts out to around 100/r-’ Mpc. Other surveys 
of optical galaxies, often trading incompleteness for greater survey depth, are also in 
progress. On the horizon is the Sloan Digital Sky Survey 1321 which aims to find the 
redshifts of one million galaxies, occupying one quarter of the sky, with anoverall 
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depth of 500/r-r Mpc and completeness out to lOOh-’ Mpc. 
The redshifts of galaxies are relatively easy (though time consuming) to measure 

and interpret, and so provide one of the more observationally simple means of de- 
termining the distribution of matter in the Universe. The main technical problem 
is to correct the distribution for redshift distortions (which gives rise to the famous 
“fingers of God” effect). However, the distribution of galaxies, specified by the galaxy 
power spectrum (or correlation function) is two steps away from telling us about the 
primeval mass spectrum. 

l We have already discussed that the primeval spectrum on intermediate scales 
has been distorted by a combination of matter dynamics and amendments to 
the perturbation growth rate when the Universe is not completely matter dom- 
inated. If we know what the dark matter is, then this need not be a serious 
problem. 

l Galaxies need not trace mass, and in modern cosmology it is almost always 
assumed they do not. This makes the process of getting from the galaxy power 
spectrum to the mass power spectrum extremely non-trivial. Models such as 
biased CDM rely on the notion of a scale-independent ratio between the two, but 
t-his too can only be an approximation to reality. In recent work, authors have 
emphasised the possible influence of environmental effects on galaxy formation 
(for instance, a nearby quasar might inhibit galaxy formation [38]), and indeed 
it has been demonstrated that only very modest effects are required in order to 
profoundly affect the shapes of measured quantities such as the galaxy angular 
correlation function [39]. 

Despite this, attempts have been made to reconstruct the power spectrum from 
various surveys. In particular, this has been done for the CfA survey [40], and for 
the Southern Sky Redshift Survey [41]. These reconstructions remain very noisy, 
especially at both large scales (poor sampling) and smallscales (shot noise and redshift 
distortions), and at present the best one could do would be to try and fit simple 
functional forms such as power-laws or parametrized power spectra to them. Even 
then, the constraints one would get on the slope of say a tilted CDM spectrum are 
very weak indeed. However, these reconstructions go along with the usual claim that 
standard CDM is excluded at high confidence due to inadequate large-scale clustering, 
without providing any particular constraints on the choice of methods of resolving 
this conflict. 

Nevertheless, with larger sampling volumes such as those which the SDSS will 
possess, one should be able to get a good determination of the galuzy power spectrum 
across a reasonable range of scales, perhaps lOh-’ to lOOh-’ Mpc. 

B. Redshift surveys in the infmmd. 
A rival to redshifts of optical galaxies is those of infra-red galaxies, based on 

galaxy positions catalogued by the Infra-Red Astronomical Satellite (IRA$)’ project 
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in the mid-eighties. The aim here is to sparse-sample these galaxies and redshift the 
subset. This is being done by two groups, giving rise to the QDOT survey [42] and 
the 1.2 Jansky survey 1431. Taking advantage of the pre-existing data-base of galaxy 
positions has allowed these surveys to achieve great depth with even sampling and 
reach some interesting conclusions. 

The main obstacle to comparison with optical surveys is due to the selection 
method. Infra-red galaxies are generally young, and appear to possess a distribu- 
tion notably less clustered than their optically selected counterparts. They are thus 
usually attributed their own bias parameter which differs from the optical bias. The 
mechanics of proceeding to the power spectrum are basically the same as for optical 
galaxies. 

The most interesting and relevant results here are obtained in combination with 
peculiar velocity information, as discussed below. 

C. Projected catalogues. 
As well as redshift surveys, one also has surveys which plot the positions of galax- 

ies on the celestial sphere. At present the most dramatic is the APM survey 1441, 
encompassing several million galaxies. The measured quantity is the projected coun- 
terpart of the correlation function, the angular correlation function usually denoted 
w(B) where 0 is the angular separation. Though arguments remain as to the presence 
of systematics, one in principle has accurate determinations of the galaxy angular cor- 
relation function. The first aim is to reconstruct the full three dimensional correlation 
function from this (proceeding thence to the galaxy power spectrum). Unfortunately, 
present methods of carrying out this inversion (based on inverting Limber’s equa- 
tion which gives w(0) from c(r) ) have proven to be very unstable, and a satisfactory 
recovery of the full correlation function has not been achieved. 

In its preliminary galaxy identification stage, the SDSS will provide a huge prc- 
jetted catalogue on which further work can be carried out. 

3. Peculiar velocity flows 

Potentially the most important measurements in large-scale structure are those 
of the peculiar velocity field. Because all matter participates gravitationally, peculiar 
velocities directly sample the mass spectrum, not the galaxy spectrum. Were one to 
know the peculiar velocity field, this information is therefore rrs close to the primeval 
spectrum as is microwave background information. Indeed, in the linear regime the 
spectrum of the modulus u of the velocity16 is just given by 

P”(k) = & (q)’ -$ A;(k)Z”(k). (6.12) 

“The spectrum is defined a.~ P, = V(k3/2~Z)(16./Z), with V bPing the volume over which the 
Fourier components 6,(k) are defined. 
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Perhaps the most exciting recent development in peculiar velocity observations is 
the development of the POTENT method by Bertschinger, Dekel and collaborators 
[45]. Using only the assumption that the velocity can be written as the divergence 
of a scalar (in gravitational instability theories in the linear regime this is naturally 
associated with the peculiar gravitational potential), they demonstrate that the radial 
velocity towards/away from our galaxy (which is all that can be measured by the 
methods available) can be used to reconstruct the scalar, which can then be used to 
obtain the full three dimensional velocity field. This has been shown to work very 
well in simulated data sets, where one mimics observations and then can compare 
the reconstruction from those measurements with the original data set. So far, the 
noisiness and sparseness of available real radial velocity data has meant that attempts 
to reconstruct the fields in the neighborhood of our galaxy have not yet met with great 
success; however, once better and more extensive observational data are obtained one 
can expect this method to yield excellent results. 

At present, POTENT appears at its most powerful in combination with a sub- 
stantial redshift survey such as the IRAS/QDOT survey. As POTENT supplies 
information as to the density field and the redshift survey to the galaxy distribution, 
the two in combination can be used in an attempt to measure quantities such as the 
bias parameter and the density parameter Re of the Universe. Reconstructions of 
the power spectrum have also been attempted [46]. At present, the error bars (due 
to cosmic variance because of small-sampling volume, due to the sparseness of the 
data in some regions of the sky and due to iterative instabilities) are large enough 
that a broad range of spectra (including standard CDM) are compatible with the 
reconstructed present-day spectrum. 

With larger data sets and technical developments in the theoretical analysis tools, 
POTENT (and indeed velocity data in general) appears to be a very powerful means 
of investigating the present-day power spectrum. To that, one need only add a knowl- 
edge of the dark matter to obtain the primeval spectrum and thence to the inflaton 
potential. Although likely to be limited to the range of scales specified at the lower 
end by the onset of the nonlinear regime and at the upper end by the range of feasi- 
ble experimental measurements of the radial peculiar velocity, it seems that velocity 
data provide the most promising means of reconstructing a segment of the inflaton 
potential. 

C. Small scales (Sh-r Mpc -+ oh-1 Mpc): 

It is worth saying immediately that this promises to be the least useful range of 
scales. For many choices of dark matter, including the standard hot dark matter 
scenario, perturbations on these scales are almost completely erased by dark matter 
free-streaming to leave no information as to the primeval spectrum. Only if the dark 
matter is cold does it seem likely that any useful information can be obtained. 

There are several types of meastiremrut which can be made. Quite a bit is known 
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about galaxy clustering on small scales, such as the two-point galaxy correlation 
function. However, the strong nonlinearity of the density distribution on these scales 
erases information about the original linear-regime structure, and the requirement 
of N-body simulations Jo make theoretical predictions makes this an unpromising 
avenue for reconstruction even should nature have chosen to leave significant spectral 
power on these scales. There exist very small-scale (arcsecond-arcminute) microwave 
background anisotropy measurements [47], though these are susceptible to a number 
of line of sight effects, and further the anisotropies are suppressed (exponentially) 
on short scales because the finite thickness (about 7h-’ Mpc) of the last scattering 
surface comes into play. 

Up to now, the most useful constraints on small scales have come from the pair- 
wise velocity dispersion [48] (the dispersion of line-of-sight velocities between galax- 
ies). These are sensitive to the normalization of the spectrum at small scales, though 
unfortunately susceptible to power feeding down from higher scales as well. There are 
certainly noteworthy constraints-for instance it is generally accepted that unbiassed 
standard CDM generates excessively large dispersions. However, the calculations 
required involve N-body simulations and because a wide range of wavelengths con- 
tribute, obtaining knowledge of any structure in the power spectrum on these scales 
is likely to prove impossible, even if the amplitude can be determined to reasonable 
accuracy. 

VII. DISCUSSiON AND CONCLUSIONS 

To date, the traditional approach in cosmology has been to take a set of theoretical 
predictions for the structure of our universe and compare them directly with what is 
observed. The aim is to reduce to aminimum the space of possible theories consistent 
with observations. Unfortunately such an analysis can only deduce which theories are 
unsuitable and is unlikely to select uniquely the correct one. An alternative and more 
ambitious program is to use the observations to reconstruct the theory. Within the 
context of the inflationary universe, for example, such an approach is justified when 
one considers the prize on offer-the form of the inflaton potential. The purpose of 
the present work has been to illustrate how such a reconstruction of the potential is 
possible in principle. 

There are two steps to any.reconstruction procedure. In practice the observational 
information may not be in a form which allows a direct comparison with the theoret- 
ical predictions to be made. Ii is therefore~necessary to first convert the data into the 
quantity predicted and only then can the second step of reconstructing the potential 
be completed. As was-shown in Section VI, this is especially true in the inflationary 
universe and presents a number of fundamental difficulties with the procedure. 

In Section III, however, we successfully completed the second step of the process 
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by deriving the correspondences between the tensor and scalar fluctuation spectra and 
the potential. This extended the analysis of Ref. [7] and a number of examples were 
presented in Section IV. In a true reconstruction one should make no assumptions 
concerning the form of the potential. In particular, the assumptions of slow-roll, which 
are essentially conditions on the flatness of V(d), should be avoided. The formalism 
used places no restrictions on the inflaton field dynamics, but does assume the slow- 
roll expressions for the perturbation spectra still apply. From a comuutational point 
of view, it follows that reconstruction is unambiguous once the t* :’ strum is 
known. Unfortunately, however, it is this quantity which is the ij. .. difficult to 
determine observationally. The only observational effect of primordial gravitational 
waves appears to be their influence on large-scale CMBR anisotropies. We conclude 
that the most promising method of determining the tensor spectrum is to combine the 
large-scale CMBR results with intermediate scale data from peculiar velocities and 
ZMBR anisotropies. The latter require a knowledge of the dark matter component, 
but are independent of any bias in the galaxy distribution. They determine the scalar 
spectrum, whereas the former depends on both the scalar and tensor modes. A simple 
subtraction therefore yields the tensor spectrum. 

Eq. (3.11) will allow a test of the inflationary paradigm to be made if a separate 
determination of the tensor spectrum on large scales can be made. A separate deter- 
mination of AG on large angular scales coupled with COB,?? [l], Tenerife [49] and the 
Princeton-MIT balloon [50] would lead-to A’& This could then be compared with the 
theoretical prediction derived from Eq. (3.11). If a discrepancy was found, it would 
suggest that one or more of the initial assumptions-such as the background space- 
time being flat; using a single, minimally coupled scalar field or Einstein gravity-were 
incorrect. On the other hand, in the absence of any discrepancy, this result could be 
used with a combination of CMBR measurements around 2”, velocity and galaxy clus- 
tering data, and compared with the theoretical predictions for different dark matter 
models. This would lead to limits on the form of dark matter present in the Universe. 

We note that reconstruction is still possible if the gravitational waves are not 
significant, although one must then deal with the integration constant which arises 
in the solution of Eq. (3.11) and can affect the functional form of the potential. 

Although we have been somewhat pessimistic about the near-term prospects for 
reconstructing the functional form of the potential, we are optimistic regarding the 
near-term possibility of obtaining some knowledge about the potential. To illustrate 
the promise of our method, let us assume that within a few years that a combination 
of CMBR measurements give us some information about the scalar and tensor am- 
plitudes at a particular length scale Xs (corresponding to an angular scale 0s). An 
example is that we might in the near future have in hand the following: 

As(X,) = l~~~.lO-~, A&X,,) = 2 x 1O-6; no= 0.9; n; = 0. (7.1) 

If we would have this information, we can follow the perturbative procedure out- 
lined m Sections V and reconstruct information about the potential; in the vicinity of 
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some point ho: 

V(h) = (2 x 10’6GeV)4 

kV’(&) = (3 x 10’5GeV)3 

V”(&) = (5 x 1013GeV)2. (7.2) 

By taking some appropriate ratios one may find mass scales for the potential. In this 
way cosmology might be first to get a “piece of the action” of GUT-scale physics. 
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Figure 1: 
Figure Captions 

A schematic figure illustrating the main concepts behind reconstruction. For infla- 
tion the two main steps involve converting the observations (lower half of figure) into 
the primordial scalar (As) and tensor (Ac) fluctuation spectra and then working in 
reverse to reconstruct the potential V(b). The main observational information from 
the cosmic microwave background arises through the Cosmic Background Explorer 
(COB&J’) satellite [l], and the Tenerife (TEN) [49] and South Pole (SP) [51] col- 
laborations. Galaxy surveys (APM [44], CfA [37], IRAS [42,43]) may provide useful 
information up to lOOh-’ Mpc, while the Sloan Digital Sky Survey (SDSS) (321 should 
extend to the lowest scales measured by COBE. Peculiar velocity measurements using 
the POTENT (P) [45] methods are important on intermediate scales. The angle B 
measures angular scales on the CMBR in degrees, and length scales X are in units of 
h-’ Mpc. dH refers to the horizon size today and at recombination and dnL o 8h-’ 
Mpc is the scale of non-linearity. (See the text for details). Perfect observations will 
only reconstruct a small portion of the inflaton potential corresponding to between 
53 5 AN 5 60 e-foldings before the end of inflation. 

Figure 2: 
Multipoles up to 1 = 30, roughly corresponding to the complete range of large scales. 
The solid .line represents the ensemble averaged (Q:) (multiplied by 1) for a flat 
(n = 1) spectrum of scalar density perturbations with AC(A) < As(X) , normalized 
to Ci = 1. The three dashed lines represent different randomly chosen realizations 
of this distribution. Observations can only supply one such line, giving little clue 
to the ensemble average quantity that inflation supplies the form of. For compari- 
son, the dash-dotted line shows the result-of a scalar spectrum with n = 0.8, again 
with AG(X) < As(X) (such a combinationwould arise from an appropriate inverted 
harmonic oscillator potential). Note that -the normalization of this line is arbitrary 
(shown here with Cz = l), and were it moved up it could match an observed distribu- 
tion across much of the range. More significantly, it is easy to note that any detailed 
information in the spectrum such as peaks-or troughs can be swamped completely by 
the cosmic variance. 
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